

Analysis and improvement of a Pre-Harvest Inventory Design using GIS

BMU International Climate Initiative > SPC/GIZ Project "Climate Protection through Forest Conservation in Pacific Island Countries"

Subproject: "Development of technical parameters for the integration of SFM and REDD+ "

Lead to Research Project(Supervisor: Prof. Dr. Dr.hc. Michael Mussong)

Introduction

Problem

Concept

Study Area

Procedure

Analysis

Results

Outlook

Introduction

Problem

Concept

Study Area

Procedure

Analysis

Results

Outlook

Sustainable Forest Management

Limitations of the PHI System

Plots on strip lines baseline forest

Many sample plots

- Very time consuming
 - High costs

Introduction

Problem

Concept

Study Area

Procedure

Analysis

Results

Outlook

Analysis of PHI systems

Introduction

Problem

Concept

Study Area

Procedure

Analysis

Results

Outlook

Full Data Set of one Forest Compartment

PHI design from 1991
Strip distances 100 m
Sample Plot Size 25 x 50 m
(1250 m²)

few but big Sample Plots

Sample Plot Size 10 x 20 m (200 m²)

many but small Sample Plots

Simulation of Inventories using GIS Software

Nakavu Forest "National Forest Management Pilot Project Area"

Introduction

Problem

Concept

Study Area

Procedure

Analysis

Results

Outlook

Sources: Shapes of Oceania: ESRI Data and Maps 2009

Shape of Viti Levu: Dresen, E. 2006.

Shape of Nakavu Forest: Fiji Ministry of Fisheries and Forestry (undated)

Introduction

Problem

Concept

Study Area

Procedure

Analysis

Results

Outlook

Mathematical derivation of Tree coordinates

1) Tree is right to baseline and $\alpha > \alpha'$

Introduction

Problem

Concept

Study Area

Procedure

Analysis

Results

Outlook

Mathematical derivation of Tree coordinates

2) Tree is right to baseline and $\alpha < \alpha'$

Introduction

Problem

Concept

Study Area

Procedure

Analysis

Results

Outlook

Mathematical derivation of Tree coordinates

Concept

Study Area

Procedure

Analysis

Results

Outlook

Tree distribution Map Compartment 7

National Forest Management Pilot Project Area, Viti Levu, Fiji

Introduction

Problem

Concept

Study Area

Procedure

Analysis

Results

Outlook

[1] World Country Shapes, ESRI Data and Maps (2009) [2] Viti Levu Shape, Dresen, E. (2006.) [3] National Forest Management Pilot Project Area, Fiji Ministry of Fisheries and Forestry (undated) [4] Data from Regional project Climate Protection through Forest Conservation in Pacific Island Countries (2012)

Big Plots (PHI 1991)

Number of Plots needed

$$n = \frac{t^2 * CoVar^2}{E^2}$$

PHI 1991	Vol (per Plot)
Average	96,9 m³
Standard deviation	53,4 m³
Coefficient of variation	54 %

PHI 1997	Vol (per Plot)
Average	1,7 m³
Standard Deviation	2,1 m³
Coefficient of Variation	118 %

Volume - Amount of Plots for different E %

Small Plots (PHI 1997)

Volume - Amount of Plots for different E %

Introduction

Problem

Concept

Study Area

Procedure

Analysis

Results

Outlook

(Interim) Results

Introduction

 Both systems are not suitable for precise forecast (5 % error level) in such small scale Problem

Concept

Study Area

Procedure

Analysis

Results

Outlook

 At 20 % error level the amount of sample plots needed can be much reduced
 PHI 1991 > about 30 % loss plots pooded

PHI 1991 > about 30 % less plots needed

PHI 1997 > about 50 % less plots needed

Outlook

Further investigation:

- Profound statistical analysis
- Different other sample plot arrangements
- Plotless sampling techniques as e.g. k-nearest neighbour

Introduction

Problem

Concept

Study Area

Procedure

Analysis

Results

Outlook

Thank you! Questions?

tom.thiele@hnee.de

Bibliography

- **de Vletter, J. (1995).** *Natural Forest Management Pilot Project. Final Report.* Fiji Forestry Department/GTZ Regional Forestry Project South Pacific.
- de Vletter, J. (1997). Pre-Harvest Inventory (PHI). A Manual containing practical instructions for forest technicans and landowners. Wageningen: GTZ PACIFIC GERMAN REGIONAL FORESTRY PROJECT.
- **Dresen, E. (2006).** GIS-based land suitability assessment for pine (Pinus caribaea) and mahogany (Swietenia macrophylla) plantations in Viti Levu / Fiji. Eberswalde: Bachelorarbeit, Hochschule für nachhaltige Entwicklung Eberswalde (FH).
- Köhl, M., Magnussen, S., & Marchetti, M. (2006). Sampling Methods, Remote Sensing and GIS Multiresource Forest Inventory. Berlin: Springer Verlag.
- Kramer, H., & Akça, A. (2008). Leitfaden zur Waldmesslehre. Frankfurt am Main: J.D. Sauerländer's Verlag.
- Lenoa, L. (2005). Nakavu Forest: Research makes the difference. In P. Durst, C. Brown, D. Henrylito, & M. Ishikawa, In Search of Excellence Exemplary Forest Management in Asia and the Pacific (pp. 271-282). Bangkok: RAP PUBLICATION 2005/02. FAO Regional Office for Asia and the Pacific.
- Mussong, M., & Hoffmann, S. (2012). Development of technical parameters for the integration of SFM and REDD+. Suva: SPC/GIZ Regional Project "Climate Protection through Forest Conservation in Pacific Island Countries".