Vehicle detection in aerial LiDAR point clouds

Michel Lanz Terralmaging B.V. / Aerodata Surveys Berlin / Utrecht Research Project HNEE 03/2013

Structure

- Introduction
- Materials / Methology
- Results
- Discussion
- Conclusion
- Literature

1. Introduction

- Terralmaging / now part of Aerodata Surveys
- Remote Sensing Company
- Berlin, Utrecht, Paris
- Focus on LiDAR:
 - Airborne Surveys
 - Calibration of flightlines
 - Classification of point clouds
 - Further use as DTM / DSM

1. Introduction

- Increasing point density:
 - Possible uses beyond DTM and DSM
- Research Question:
 - Automatic algorithm for detection of vehicles
- Why?

➢Non-permanent objects

Transportation and infrastructure surveys

2. Materials

- Materials:
 - LiDAR point cloud
 covering Rotterdam with
 60pt/m², thinned
 (30pt/m² and 10pt/m²)
 - 250m x 250m
 - TerraSolid, ArcMap10,
 CloudCompare
 (OpenSource) and
 MatLab2010
 - Manual marked vehicles

Figure 1 + 2: Visualization of point cloud covering investitgation area

2. Methology

- Reference approach
 - Developed by researchers from Terralmaging

- Research Approach
 - Development and implementation of a new algorithm for automatic vehicle detection using reference and literature
 - Tested on three different point cloud densities
 - Quality assessment (number and area)

2. Methology

- Global classification of point cloud:
 - Ground points
 - Building point
 - Interesting class for vehicles
 - Class of vegetation
- Triangulation and gridding of:
 - possible vehicle points

Figure 3: Triangulated vehicles in point cloud

2. Methology

- Image processing of connected components on binary image
 - Numeric Eccentricity

•
$$e = \frac{\sqrt{(a^2 - b^2)}}{a}$$
 (ellipsoid)

- Area (pixels)
- Minor / major axis length -> vehicle extend
- Substraction of areas with vegetation
- Reconstruction of vehicle shape (convex hull)

Figure 4: Unclassified investigation area (250m*250m (60pt/m²)

Figure 5: Classified point cloud (60pt/m²) Red: building, Green: low vegetation, Blue: high vegetation + rest, Turquoise: ground)

Figure 6: Gridded low vegegation class (60pt/m²)

Figure 7: Result of vehicle detection

Figure 8: Gridded low vegegation class (30pt/m²)

Figure 9: Result of vehicle detection

Figure 10: Gridded low vegegation class (10pt/m²)

Figure 11: Result of vehicle detection

- Quality assessment
 - Vehicle number
 - Covered vehicle area (%)
 - Share of marked area outside vehicle shapes (%)
- Four algorithms (with increasing complexity) + reference tested

Point density	Covered vehicle shape area (research)	Covered vehicle shape area (reference)	Share of marked area outside vehicle shapes (research)	Share of marked area outside vehicle shapes (reference)	Vehicle detection (total: 167) (research)	Vehicle detection (total: 167) (reference)
60pt/m²	84% - 90%	66%	18% - 38%	26%	132 -158	132
30pt/m²	76% - 90%	64%	27% - 47%	33%	105 – 140	129
10pt/m²	58%- 72%	73%	26% - 44%	39%	63 – 123	120

Table 1: Summarized results of vehicle detection algorithms

4. Discussion

- Decreasing successs in vehicle detection (area / number) with decreasing point density
- Image processing complexity needed for higher point cloud density
- Strongly differing success within one point density depending on method

5. Conclusions

- Research methods are improvement
- Up to 90% of vehicle area detected
- Error rate between 18% and 27% (best of each)
- Improvements image processing:
 - Height / orientation of connected components
 - Reconstruction of vehicle shapes (orientation and axis lengths)
 - Combination with aerial imagery (Stereo Vision)

6. Literature

Bartels Marc, Wei Hong and Mason David C. DTM Generation from LIDAR Data using Skewness Balancing [Conference] // ICPR. - Hongkong : 18th International Conference on Pattern Recognition (ICPR'06), 2006. - Vol. 1.

Börcs Attila and Benedek Csaba A marked point process model for vehicle detection in aerial LIDAR point clouds [Conference] // ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. - Melbourne, Australia : ISPRS, 2012. - pp. 94-98.

Brodu Nicolas and Lague Dimitri 3D Terrestiral lidar data classification of complex natural scenes using a multi scale dimensionality criterion: applications in geomorphology [Report]. - Rennes, France; Christchurch, New-Zealand : Geosciences Rennes, Université Rennes; Dpt of Geological Sciences, University of Canterbury, 2012.

Descombes X., Minlos R. and Zhizhina E. Object extraction using a stochastic birth-and-death dynamics in continuum [Journal] // Mathematical Imaging and Vision. - 2009. - pp. 347-359.

Gonzalez Rafael C. and Woods Richard E. Digital Image Processing [Book]. - Upper Saddle River : Prentice Hall International, 2008.

Hu Xiangyun, Tao C. Vincent and Hu Yong Automatic Road Extraction From Dense Urban Area By Integrated Processing Of High Resolution Imagery and LIDAR Data [Report]. - Toronto, Canada : Department of Earth and Space Science and Engineering, York University, 2004.

Katzenbeisser Rolf About the calibration of Lidar sensors [Conference] // 3-D Reconstruction from Airborne Laser-Scanner and InSAR data. - Dresden : ISPRS, 2003.

Lovas T., Toth C. K. and Barsi A. Model - Based Vehicle Detection From Lidar Data [Report]. - Budapest (Hungary), Columbus (USA) : Department of Photogrammetry and Geoinformatics, Budapest University of Technology and Economics; Center for Mapping, The Ohio State University, 2004.

Marquardt DW Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation [Journal]. - 1970. - Vol. 3. - pp. 591-612.

MathWorks MathWorks [Online] // Documentation Center. - Matlab, 2012. - 12 29, 2012. - http://www.mathworks.de/de/help/images/ref/imextendedmax.html.

PCL Point Cloud Library (PCL) 1.7.0 [Online]. - 2012. - 09 26, 2012. - http://docs.pointclouds.org/trunk/classpcl_1_1_principal_curvatures_estimation.html.

Soille P. Morphological Image Analysis: Principles and Applications [Book Section]. - Berlin, New York : Springer Verlag, 1999.

Soininen Arttu Terra Scan User Guide [Book]. - Helsinki : Terrasolid, 2011.

Toth C. K., Barsi A. and Lovas T. Vehicle Recognition From LiDAR Data [Report]. - Columbus (USA) and Budapest (Hungary) : OSU (Center for Mapping) and BUTE (Department of Photogrammetry and Geoinformatics), 2003.

Yang Bo, Sharma Pramod and Nevatia Ram Vehicle Detection From Low Quality Aerial LIDAR Data [Conference] // Applications of Computer Vision (WACV). - Kona, USA : IEEE, 2010. - pp. 541-548.

Yao W. and Stilla U. Comparison of two methods for vehicle extraction from airborne lidar data toward motion analysis [Journal] // IEEE Geoscience and Remote Sensing Letters 8 (4). - 2011. - pp. 1100-1108.

Yao W., Hinz S. and Stilla U. Vehicle Activity Indication From Airborne Lidar Data Of Urban Areas By Binary Shape Classification Of Point Sets [Conference] // CMRT09 / ed. Stilla U., Rottensteiner F. and Paparoditis N.. - Paris : International Society for Photogrammetry and Remote Sensing, 2009. - pp. 35-40.

Yao Wei Extraction and Velocity Estimation of Vehicles in Urban Areas from Airborne Laser [Article] // Deutsche Geodätiscche Kommision bei der Bayerischen Akademie der Wissenschaften. - München : Verlag der Bayerischen Akademie der Wissenschaften in Kommision beim Verlag C.H. Beck, 2011. - Dissertationen. - Heft Nr. 656 : Vol. Reihe C.

Yao Wei, Hinz Stefan and Stilla Uwe 3D Object-based Classification for Vehicle Extraction from Airborne LiDAR Data by Combining Point Shape Information with Spatial Edge [Report]. - München, Karlsruhe : TUM, KIT, 2010.

Thank you for your attention!

Questions?