

Visualization of Climate Data in R

By: Mehrdad Nezamdoost Mehrdad@Nezamdoost.info April 2013

Content

- Why visualization is important?
- How climate data store ?
- Why R?
- Packages which used in R
- Some Result in R
- Combining Script in SimEnvVis
- Future work and opportunities
- Over View

What is Visualization-Terminology

What is Visualization? computer-supported generation of graphical representations from data What can Visualization do? intuitive, compressed representation of complex data

Use of Visualization/Visualization Task

explorative analysis

 starting point: unknown data set without any hypothesis about the data - interactive, often non-directional search

confirmative analysis

starting point: hypothesis about the data - validation of the hypothesis

presentation

 starting point: already known facts – presentation / communication of the results

How climate data store ?(NetCDF Format)

Founded by NASA and developed by Unidata (Natinal Science Foundation) machine-independent format for representing scientific data-*.nc

- Self Describing
- Portable
- Shareable
- C, C++, Java, R, python, Ruby, ArcGIS and...
- Current version 4.1 (2010)

How its look like?

Dimension Elevation (z) Dimension Latitude (y) Temperature (Variable) Dimension: Longitude(x)

How its look like?

Look inside NetCDF File

```
List of 10
$ id
         : int 4
$ ndims
            : int 3
          : int 7
$ natts
$ unlimdimid: num 3
$ filename : chr "C:\\PIK\\Data\\n4 177f9060-a351-11e1-b55e-e1515196aa7,,
$ varid2Rindex: num [1:7] 0 0 0 1 2 3 4
$ writable : logi FALSE
$ dim
           :List of 3
 ..$ longitude:List of 8
 .. ..$ name
                : chr "longitude"
 .. ..$ len
              : int 720
 ....$ unlim : logi FALSE
 .. ..$ id
             : int 1
 ....$ dimvarid : num 1
 ....$ units : chr "degrees east"
 .. ..$ vals
              : num [1:720(1d)] 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75 ...
 ....$ create_dimvar: logi TRUE
 ....- attr(*, "class")= chr "dim.ncdf,,
$ nvars : num 4
$ var
          :List of 4
 ..$ biomass_carbon_burning_nonCF:List of 16
 .. ..$ id
            : int 4
 .. ..$ name
              : chr "biomass carbon burning nonCF"
 .. ..$ ndims
              : int 3
 .. ..$ natts
              : int 4
              : int [1:3] 720 279 4
 .. ..$ size
              : chr "float"
.. ..$ prec
 ....$ dimids : num [1:3] 1 2 3
              : chr "kg m-2"
 .. ..$ units
 ....$ longname : chr "biomass carbon burning"
 .. ..$ dims
               : list()
 .. ..$ dim
               :List of 3
```

File Description

1st Dimension Description

1st Variable Description

How to read *.nc file

- Linux: ncdump command
- Widows : ncBrowse
- R: ncdf , RNetCDF (read.nc(file.choose())

Advantage:

- -Open Source
- -huge support from user
- -user working for user
- -fast growing
- -easy to understand
- -Change the shape of software as you wish depend on what packages you load
- -Cross platform
- Transparent

Why not ?

Disadvantage:

- -changing in version caused some package is not working properly
- -The Transparency is good for scientific work and in job world other software may use more often

Packages which is used

- Visualization :
 - ggplot2
 - Raster(+plot)
- Data preparation :
 - Plyrpackage
 - RNetCDF
 - Arrayhelper

(Choosing right package)

Some Result(script)

Script Netcdf to Data frame

```
R N:\Study\FIT\3 HNEE\Research Project\PIK\PIK\R scripts\NCtoDataFrame_ver1_5_RNetCDF_array.
 the thing that I could do with 3 line I spend 2 weeks to find out
Ncdf2df=function(nc=1)
      library(RNetCDF)
      library(arrayhelpers)
      if (nc==1)nc=open.nc(file.choose())
      nd=file.ing.nc(nc)[[1]]# number of dimension
      nv=file.ing.nc(nc)[[2]]# number of variable start from 0
                                          Extract Dimension
for(i in 0:(nd-1))
                   Dname=(var.ing.nc(nc,i)[[2]]) #name of variable
                   Dvalue=var.get.nc(nc,i)
                   if (i==0)
                   11=list(V=Dvalue)
                   names(11)[[i+1]]<-Dname
```

Some Result: raster+plot **presentation**

Some Result: heat map,ggplot2 presentation

Some Result: Time Seriese **presentation**

Some Result: parallel coordinate explorative analysis

Mosaic Plot explorative analysis

Compare Wind Speed and Sunshine in diffrent latitude

Combining Script in SimEnvVis

SimEnvVis is the open source software to Visualize the climate data, PIK.

Language which used for integration :
 C++ and for UI (R Studio)

And More Result ...

- Getting to know new part of science Visualization
- Getting to know Open Active Open Source community (Qt, R, Linux, Python, QGIS, CMS, JQuery)→ C++
- Knowing valuable and free source bank (Github, Source Forge)
- Object Oriented Concept in C++
- Data Management in R
- Be patient (4H each day)

Over View

Conclusion and Future research

- Working more in Technical part of Visualization like hypothesis about the data OR validation of the hypothesis
- Entering to more in data mining issues like sensitivity analysis
- Or developing model, testing models and finding proper tuning of existing model for achieving certain goal