Geostatistical Analysis of Species Diversity Using Field and Topographic data (DEM)

case study: Flysch (Outer Carpathian) Forested Landslides south Poland

Elvis Tangwa

Supervior: dr inż. Tracz

Outline

Introduction

- Study area
- Objectives
- Concepts and requirements

Material and methods

- ESDA (exploratory spatial data analysis)
- Combined variables

Results and discussions

- Variogram modelling
- Compare and evaluate models and methods

Conclusions and outlook

Study Area

Sum of Species in Each Sample Location

Cordinate system: ETRS_1989_Poland_CS92

Figure 1: Location of the study area

- Landslide facilitate the evolution and succession of new species (Alexandrowicz and Margielewski. 2010; Seiwa et al., 2013)
- Complex terrain with strong topographic variation

Figure 2: slope variation in study area

Aim and Objectives

Aim

Predict species diversity using geostatistical methods

Objectives

- Create and select the best possible combined variable which explains variations in species diversity
- Test and compared the performance Ordinary kriging (OK), cokriging (CCK) and regression kriging (RK) methods
- Quantify the uncertainty of each prediction method
- Learn basic and advanced geostistical methods

Concepts and requirments

• Stationarity (constant mean and variance)

$$Z(s_i) = \mu + e(s_i)$$
 eq.1

 $Z = value \ of \ variable, \ s_i = (x, \ y \ location), \ \mu = mean, \ and \ e(s_i) = random \ error$

Spatial depedence

(autocorrelation or cross correlation)

$$\gamma(h) = \frac{1}{2n} \sum_{i=1}^{n} [Z(s_i) - Z(s_{i-h})]^2 \qquad eq. 2$$

$$\gamma(h) = \frac{1}{2n} \sum_{i=1}^{n} \{ [Z(s_i) - Z(s_{i-h})] \cdot [Y(s_i) - Y(s_{i-h})] \}$$

n =number of paired points for a given lag (h), i - h; is a unit distant between two sample locations $Z(s_i)$ and $Y(s_i)$ are primary and secondary variable respectively

Normality of distribution

Figure 3: Spatial dependence. Source: UNIGIS ,Salzburg, Austria (April 2017)

Figure 4: Illustration of a spherical model with associated parameter. Source: Biswas and Cheng Si, (2013)

Kriging and Interpolation

Ordinary Kriging (OK)

$$\hat{Z}(s_{?}) = \sum_{n=1}^{N} \lambda_{i} Z(s_{i})$$
 eq. 4

Ordinary Cokriging (CCK)

$$\hat{Z}(s_{?}) = \sum_{i=1}^{N_{1}} \lambda_{1i} Z_{1}(s_{1i}) + \sum_{i=1}^{N_{2}} \lambda_{2i} Z_{2}(s_{1j}) eq. 5$$

Regression Kriging (RK)

$$\hat{z}(s_{?}) = \sum_{k=0}^{p} \beta_{k} \cdot q_{k}(s_{?}) + \sum_{i=1}^{N} \lambda_{i} \cdot e(s_{i}) \qquad eq. 6$$

Base on weighted averages determined by semivariogram model (Webster and Olivier, 2007).

Primary and secondary variable should have near similar spatial structure (Bivand et al., 2013; Krivoruchko and Wood 2014).

➤ OLS regression + OK, a linear relationship must exist and residuals must be autocorrolated (Hengl et al., 2004a; Odeh et al., 1995).

Where: $\hat{Z}(s_i) = \text{value at unvisited location}$, $Z(s_i) = \text{observed sample value}$, $\lambda_i = \text{kriging}$ wights, N and N2 are respectively number of primary and secondary variable in search neighborhood, p = number of predictors, $\beta_k = \text{regression coefficient}$, qk-th =predictors, $e(s_i)$ is the regression residual at location s_i

Material and Methods

Figure 5: Methodology and workflow

Combined variables!

How?

linearly merged standardized terrain attributes originating from the same location

$$SV_A = \frac{V_A - \mu}{S}$$
 eq. 7

Where SV_A = standardized value of variable V_A = unstandardized value of terrain variable at location A,

 μ = mean value for a given terrain variable and S = standard deviation

R Packages :

Rgdal: reads shapefiile

Gstat: variogram modelling

SP: spatial classes, methods and functions

ArcGIS:

Geostatistical Analyst toolbox

Trend: mostly 2nd order polynomial

Results and Discussions

Table 3: Correlation between standardized combined

Combinations	Abbreviation	R	
Slope	-	0.53	
Slope + elevation	SE	0.25	
Slope + aspect	SA	0.45	
Elevation + aspect + slope	EAS	0.33	

- Only slope and elevation were significant predictors
- Slope + elevtation explained ~36% variation in species distribution compared ~ 28% with slope alone
- Autocorrolation ~ 200 m

Weak to moderate correlation with target

Figure 6: Variogram of regression residuals slope + elevation x target and (b) slope x target

Results and Discussion Conti...

Figure 8: Cross-variogram (target x auxiliaries) Co = nugget effect, Co + C = total sill

Species distribution

Table 3: Correlation between standardized combined

Results and discussion cont...

Figure 11: Predicted error based on Ok and CCK

- Almost similar variation pattern in predicted error
- Much higher error based on CCK compared to OK

Cross validation

■ **ME** (mean error): unbias model should be ~ 0

$$ME = \frac{1}{n} \sum_{i=1}^{n} Z(x_i) - Z(x_i)$$
 eq. 8

■ **RMSE** (root mean squared error): Model precision.

should be as small as possible:

$$RMSE = \frac{1}{n} \sum_{i=1}^{n} (Z(x_i) - z(x_i))^2$$
 eq.9

■ RMSS (root mean squared standardized) should be ~1 : Model stability.

$$RMSS = \frac{1}{n} \sum_{i=1}^{n} \frac{(Z(x_i) - Z(x_i))^2}{\sigma_k^2(x_i)}$$
 eq. 10

- **ASE** (average standard error)
- RMSE = ASE: variability and validity Where: $Z(x_i)$ =predicted value, $z(x_i)$ =observed value and $\sigma_k^2(x_i)$ =kriging variance.

Table 3: Cross validation statististics

Models		ME	RMSE	RMSS	ASE
Sum of species (C	OK)	-0.2056	13.70	1.001	14.36
Sum of species x Slope (C	CCK)	0.7906	13.67	1.084	13.25
Sum of species x SE (C	CCK)	0.1776	13.88	1.045	14.21
Sum of species x SA (0	CCK)	0.3610	13.25	1.051	13.54
Sum of species x SE (F	RK)	-0.0234	10.27	-	-
Sum of species x Slope (I	RK)	0.0115	11.11	-	-

- Fairly unbias
- RK is optimal because of low RMSE
- low precision for OK and CCK but fairly valid

Cross validation conti...

Figure 12: Comparison between observed and predicted species diversity based on OK, CCK and RK methods

Summary and conclusions

- The proposed methodology was inappropriate and somewhat misleading as it did not improve correlation with target variable
- Performance CCK was below expectation because of :
 - ✓ Difference in spatial structure between target and covariables, which made it difficult to fit appropriate coregionalized models
 - ✓ Topographic variations
- Regression kriging with slope + elevation was optimal, more flexible and robust to topographic variations than CCK
- Regression kriging should seriously be considered if two or more variables are to be used for cokriging
- A little more sampling could espeially improve results CCK results
- Based or RK with slope + elvation ,there is probably an ongoing succession of species in the south and northwest as opposed to well established species in other areas

References

- **Babak O. Deutch C. 2009**: Improved spatial modeling by merging multiple secondary data for intrinsic collocated cokriging. Journal of Petroleum Science and Engineering 69 (2009) 93–99
- **Bivand R. Pebesma E. Gómez-Rubio V. 2013** .Applied Spatial Data Analysis with R. Series, Springer New York Heidelberg Dordrecht London, 2nd ed. 2013. ISBN 978-1-4614-7618-4 (eBook)
- Johnston K. Hoef J. Krivoruchko K. Neil l. 2001. ArcGIS 9.3: Using ArcGIS Geostatistical Analyst. (ESRI open source document)
- **Hengl T. Heuvelink B. Stein A. 2004a**. A generic frame work for spatial prediction of soil variables based on regression kriging. Geoderma 122 (1-2): 75–93.
- **Krivoruchko K. 2011.** Spatial Statistical Data Analysis for GIS Users (chapter 6 and 8) Esri Press, 380 New York Street, Redlands, California 92373-8100
- Webster R. Oliver A. 2007. Geostatistics for Environmental Scientists. England, John Wiley & Sons Ltd. 2001.00393.x

Thank you for your attention!