Recognition with eCognition

Skid trail detection with multiresolution segmentation in eCognition Developer

Presentation from Susann Klatt Research Colloqium 4th Semester M.Sc. Forest Information Technology

Outline of Presentation

- 1. Introduction
 - 2. Material
- 2.1. WorldView2
- 2.2. Study Area
- 3. Image Analysis
- 3.1. Segmentation
- 3.2. Classification
 - 4. Results
 - 5. Discussion
 - 6.Conclusion
 - 7. References

SUBJECT of research:

Detection and extraction of forest structures in particular skid trails using remote sensing data

04.05.2012

1. Introduction

2.1. WorldView2

2.2. Study Area

3. Image Analysis

3.1. Segmentation

3.2. Classification

4. Results

5. Discussion

6. Conclusion

7. References

2. Material

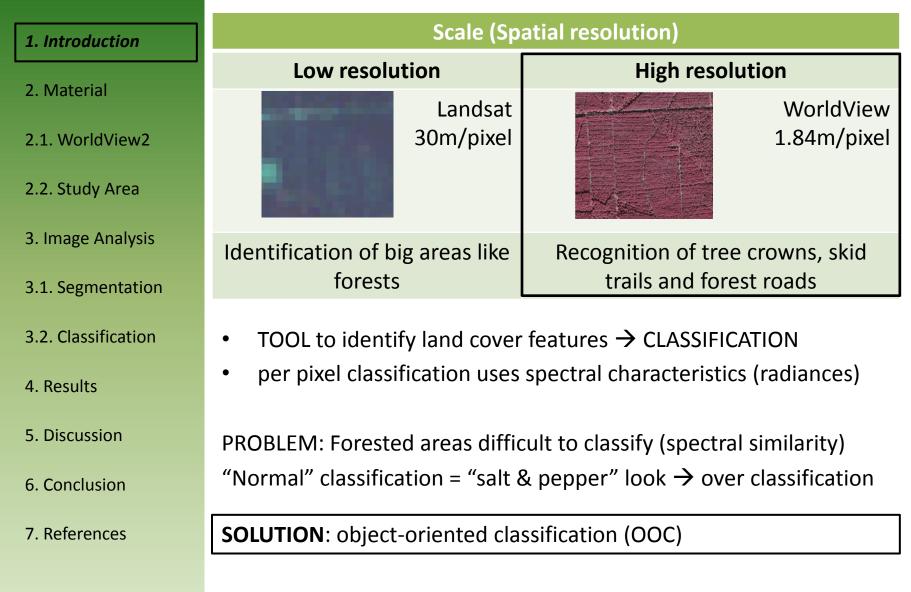
Collection of spatial information in forests

- Importance of skid trails and forest roads:
 - Logistical issues
 - Wood harvesting
 - Wood transport

REMOTE SENSING (RS) =

- collection of spatial information from space
 - → SATELLITE IMAGES
 - INTERPRETATION of satellite images in forestry for:
 - Monitoring
 - Cost reduction (vs. usual inventories)
 - Forest management support
 - Checking the compliance of PEFC guidelines (every 20m)

QUESTION:


٠

WHICH resolution of satellite images and HOW to analyze?

Source: Susann Klatt, Elmia Wood

Resolution of images and type of classification

04.05.2012

Satellite Image – WorldView2

1.	Introduction
	merodaceion

2. Material

2.1. WorldView2

2.2. Study Area

3. Image Analysis

3.1. Segmentation

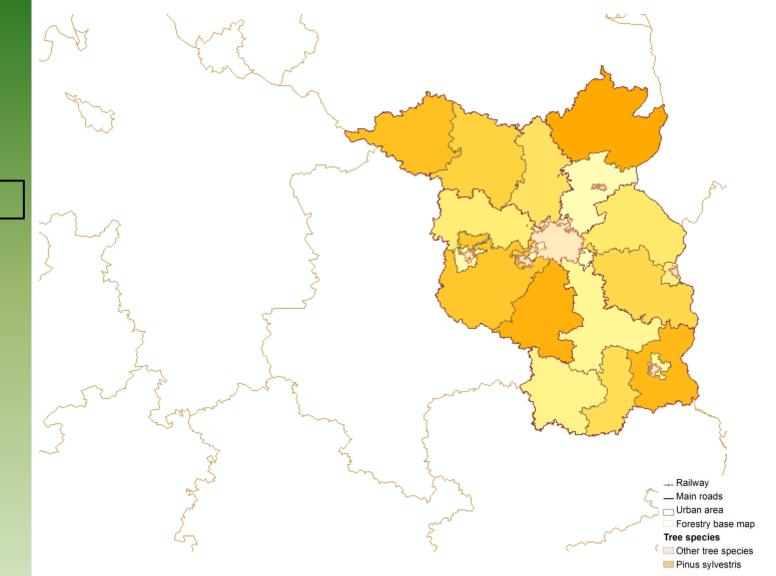
3.2. Classification


4. Results

5. Discussion

6. Conclusion

7. References


•	
Resolution:	high
Orbit:	sun-synchronous orbit
Altitude:	770 kilometers altitude
Acquisition date:	24th of September 2010
Correction:	geometric, topographic,
	radiometric
Cloud cover:	0 %
4 standard colors:	red, blue, green, near-IR
4 new colors:	red edge, coastal, yellow
	& near-infrared 2

Data	Bands	Spatial resolution	Colors
Multispectral	1-8	1.84m	Coastal, blue, green, yellow, red, red edge, near-IR, near-IR2
Panchromatic	9	0.5m	grayscale

04.05.2012

Study Area in Brandenburg

1. Introduction

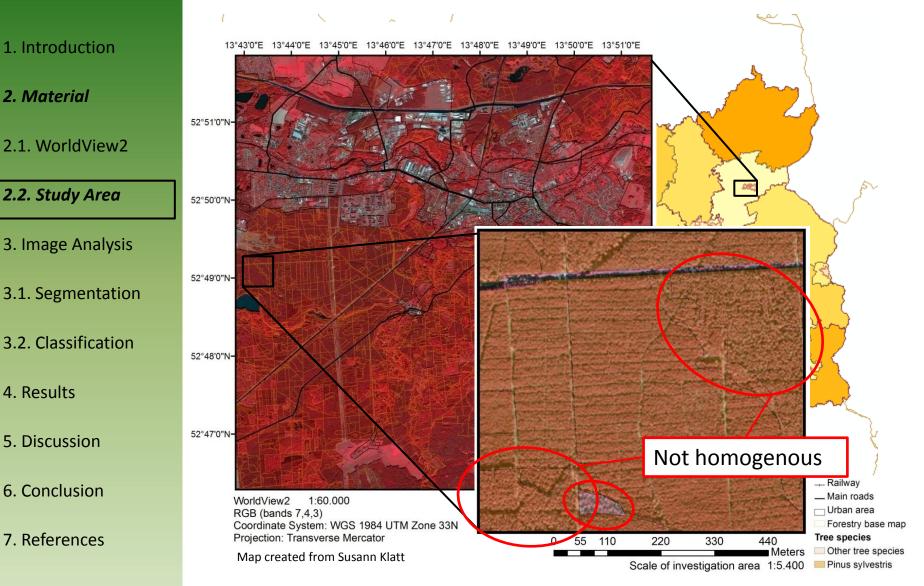
2. Material

2.1. WorldView2

2.2. Study Area

- 3. Image Analysis
- 3.1. Segmentation
- 3.2. Classification
- 4. Results
- 5. Discussion
- 6. Conclusion
- 7. References

Study area in Eberswalde, Barnim, Brandenburg


1. Introduction 13°43'0"E 13°44'0"E 13°45'0"E 13°46'0"E 13°47'0"E 13°48'0"E 13°49'0"E 13°50'0"E 13°51'0"E 52°51'0"N 2.1. WorldView2 2.2. Study Area 52°50'0"N-3. Image Analysis 52°49'0"N-3.1. Segmentation 3.2. Classification 52°48'0"N-52°47'0"N-- Railway 6. Conclusion Main roads WorldView2 1:60.000 Urban area RGB (bands 7,4,3) Coordinate System: WGS 1984 UTM Zone 33N Forestry base map 7. References Projection: Transverse Mercator Tree species Other tree species Pinus sylvestris

4. Results

5. Discussion

2. Material

Subset of study area in Barnim

04.05.2012

Software for Segmentation and OOC

Software for OOC	References
eCognition	Baatz & Schäpe, 2000; Eckert et al., 2005; Mathieu et al., 2007
Feature Analyst	Weih and Riggan, 2009
SAGA	Stock, 2005; Böhner et al., 2006; Bechtel et al., 2008
Erdas IMAGINE Objective	?

eCognition Developer 64 8.7

- Quick Map Mode: easy to use
- Rule Set Mode: to develop advanced rule sets

FOCUS: training/ understanding of software, algorithms & processes

Source: http://www.optron.com/systemfiles/ecognition-1305376726.jpg

Source: http://farmershowcase.com/wpcontent/uploads/2011/08/trimble.jpg

1. Introduction

2. Material

2.1. WorldView2

2.2. Study Area

3. Image Analysis

- 3.1. Segmentation
- 3.2. Classification
- 4. Results
- 5. Discussion
- 6. Conclusion
- 7. References

Idea of object-oriented classification (OOC)

Per pixel classification

 based on the spectral values of pixels

spectral pattern recognition

OOC = 2-step process:

- 1. SEGMENTATION:
 - image separation into objects/segments
 (groups of homogenous pixels)
- CLASSIFICATION: identification of objects depending on their attributes/characteristics/ features

characteristics to classify objects

intrinsic values	relationships among objects
spectral properties, texture, shape etc.	connectivity, position to other objects

Object-oriented classification

uses spectral & spatial patterns

spatial pattern recognition

2. Material

1. Introduction

2.1. WorldView2

2.2. Study Area

3. Image Analysis

3.1. Segmentation

- 3.2. Classification
- 4. Results
- 5. Discussion
- 6. Conclusion

7. References

1. Introduction

2. Material

2.1. WorldView2

2.2. Study Area

3. Image Analysis

3.1. Segmentation

- 3.2. Classification
- 4. Results

5. Discussion

6. Conclusion

7. References

 Segmentation = object creation/ change based on neighboring pixels and their spectral and spatial properties (texture, context)

Operations: subdividing/ splitting, merging/ reshaping

Basic segmentation principles:

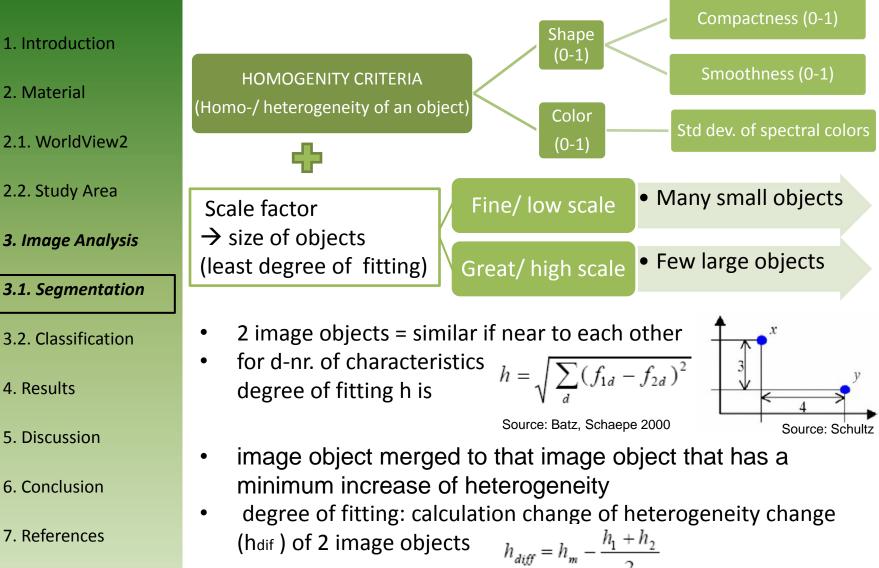
to

CU

sm

Segmentation approach

p-down strategy	bottom-up strategy
Itting something big into naller pieces	small pieces are merged to get greater ones

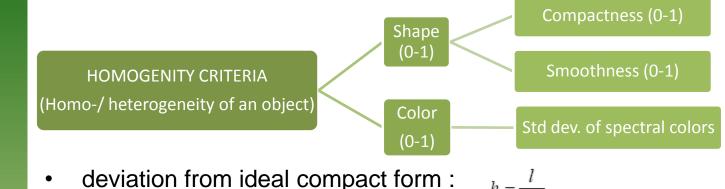

Multiresolution segmentation = bottom-up optimization process

- \rightarrow decreasing average heterogeneity & increasing homogeneity
- → If homogeneity criterion is fullfilled, pixels/ objects are merged with neighboring ones

WHAT is the homgenity criterion and HOW to get it?

04.05.2012

Segmentation parameters and priciples of pixel merging (1)



04.05.2012

FIT Research Colloqium - Suann Klatt - Recognition with Ecognition

Source: Batz, Schaepe 2000

Segmentation parameters and priciples of pixel merging (2)

relation of edge length I & root of object size n in pixels

```
h = -\frac{1}{r}
```

Source: Batz, Schaepe 2000

Different combination scale & homogeneity

 \rightarrow hierarchical network of image objects from higher order (larger) & lower order (smaller)

Level	Image object domain	Scale	Color	Shape	Compactness	Smoothness	Image layer weights
1	Pixel level	11	0,8	0,2	0,2	0,8	0,1,0,0,0,1,1,1,3
2	Image object level (1)	18	0,8	0,2	0,2	0,8	0,1,0,0,0,1,1,1,1
3	Image object level (2)	26	0,7	0,3	0,1	0,9	0,1,0,0,0,1,1,1,0
4	Image object level (3)	60	0,7	0,3	0,1	0,9	0,1,0,0,0,1,1,1,0

1. Introduction

2. Material

2.1. WorldView2

2.2. Study Area

3. Image Analysis

3.1. Segmentation

3.2. Classification

4. Results

5. Discussion

6. Conclusion

7. References

04.05.2012

1. Introduction

2. Material

2.1. WorldView2

2.2. Study Area

3. Image Analysis

3.1. Segmentation

3.2. Classification

4. Results

5. Discussion

6. Conclusion

7. References

04.05.2012

Basic principles of classification algorithms to label objects

Nearest Neighbor (NN) Classification: assigns classes to image objects based on minimum distance measurement

1. System training: selecting representative image objects samples to assign membership values

2. Classification: *"*labeling" of image objects on their nearest sample neighbors

nearest neighbor classifier: calculates membership value betw. 0-1

- → based on image object's feature space (characteristics) distance to its nearest neighbor
- NNC = 1 \rightarrow image object identical to sample
- NNC < 1 \rightarrow image object differs from sample
 - feature space distance has a fuzzy dependency on the feature space distance to the nearest sample of a class
- \rightarrow objects characteristics described by means of fuzzy logic

Basic principles of classification algorithms to label objects

1. Introduction

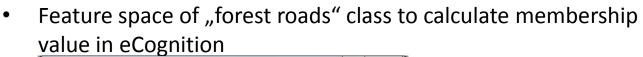
2. Material

2.1. WorldView2

2.2. Study Area

3. Image Analysis

3.1. Segmentation


3.2. Classification

4. Results

5. Discussion

6. Conclusion

7. References

Class Description	8 ×
Name Forest roads Parent class for display Forest roads All Contained Name	Display Always
Contained and (min) Standard nearest neigh Standard nearest neigh Standard nearest neigh Gompactness Compactness Compactness Degree of skeleton bran Mean Layer 4 Mean Layer 5 Mean Layer 1 Mean Layer 3 Main direction Length Max. diff.	
	OK Cancel

04.05.2012

Classification in eCognition Developer

Level	Mode	Features	Classes
1	Quick Map / Rule Set	standard nearest neighbor + additional features	Forest, ways
2	Quick Map	standard nearest neighbor	Forest, light ways (bright white shining ways)
4	Quick Map	standard nearest neighbor	Forest, ways

Rule Set Mode:

4. Results

1. Introduction

2.1. WorldView2

2.2. Study Area

3. Image Analysis

3.1. Segmentation

3.2. Classification

2. Material

5. Discussion

6. Conclusion

7. References

user is able to choose/ modify the features for the feature space \rightarrow appears as class description & used for classification

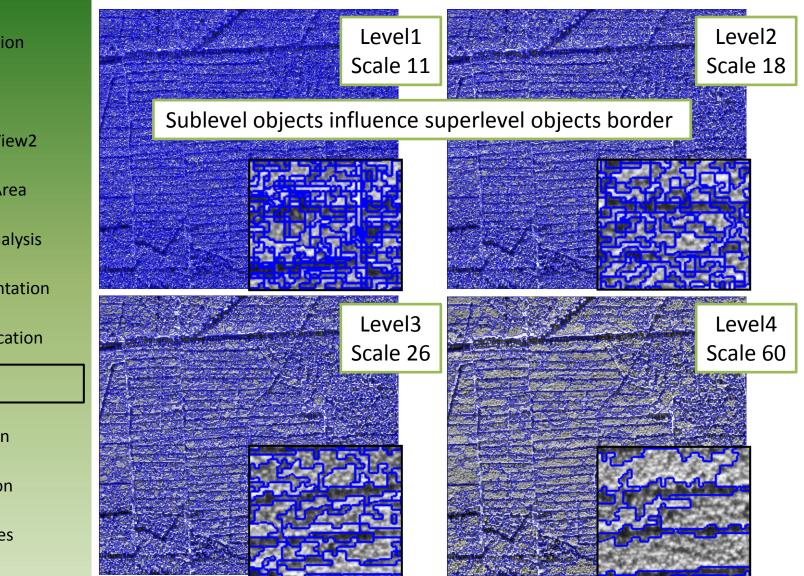


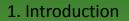
Image object levels as result of multiresolution

segmentation

1. Introduction

2. Material


- 2.1. WorldView2
- 2.2. Study Area
- 3. Image Analysis
- 3.1. Segmentation
- 3.2. Classification


4. Results

- 5. Discussion
- 6. Conclusion

7. References

04.05.2012

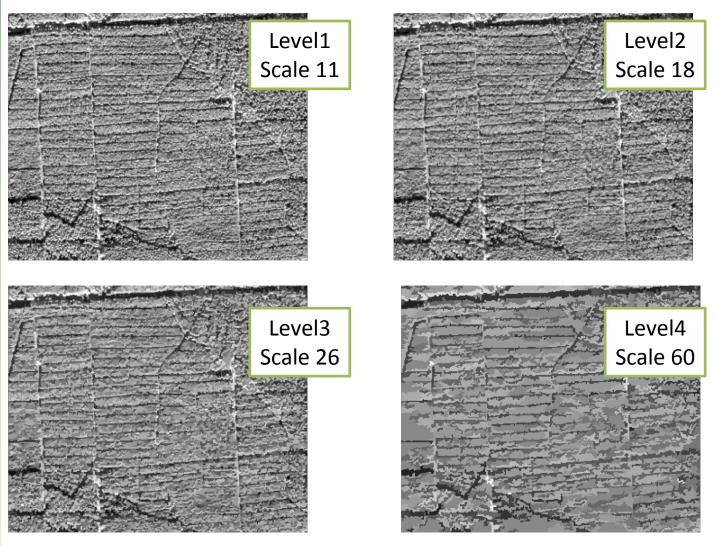
2. Material

2.1. WorldView2

2.2. Study Area

3. Image Analysis

3.1. Segmentation


3.2. Classification

4. Results

5. Discussion

6. Conclusion

7. References

Results of Nearest Neighbor Classification in Quick Map M.

1. Introduction

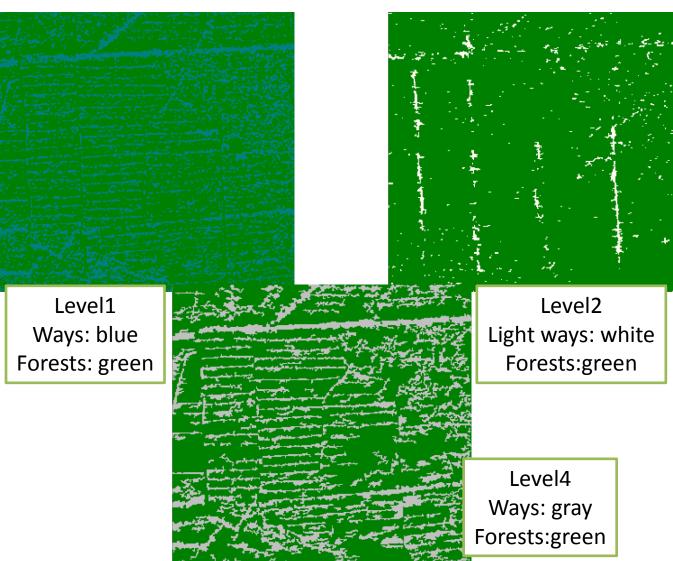
2. Material

2.1. WorldView2

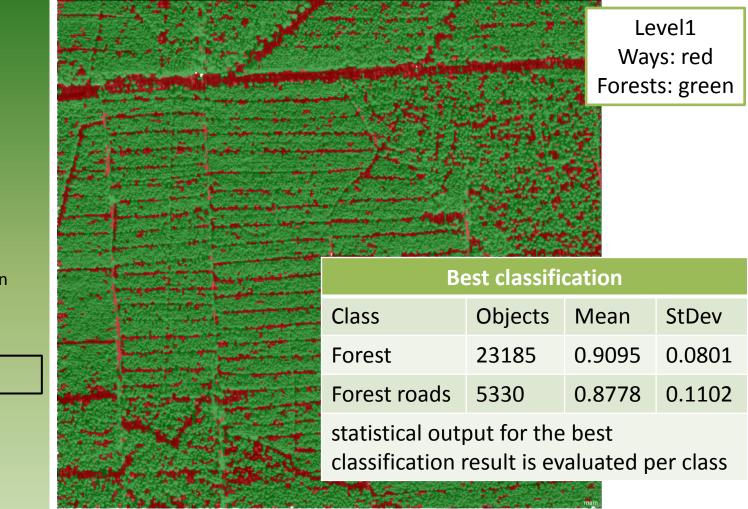
2.2. Study Area

3. Image Analysis

3.1. Segmentation


3.2. Classification

4. Results


5. Discussion

6. Conclusion

7. References

04.05.2012

Results of Nearest Neighbor Classification in Rule Set M.

1. Introduction

2. Material

2.1. WorldView2

2.2. Study Area

3. Image Analysis

3.1. Segmentation

3.2. Classification

4. Results

5. Discussion

6. Conclusion

7. References

Classification of level 1 in Rule Set Mode

04.05.2012

1. Introduction

2. Material

2.1. WorldView2

2.2. Study Area

3. Image Analysis

3.1. Segmentation

3.2. Classification

•

4. Results

5. Discussion

6. Conclusion

7. References

Improvement of segmentation and classification

- increasing visual interpretability of images
- \rightarrow By increasing distinctions between features
- → image enhancement: contrast manipulation, level slicing, contrast stretching or similar operations
- classification improvement: own membership functions based on user-defined functions of object features (contrast: Nearest Neighbor classification uses set of samples of different classes to assign membership values)
 - use of skeletons & edge detection algorithms
 - creation of advanced classification algorithms to classify objects by finding minimum/ maximum values of functions, or connections within objects

1. Introduction

2. Material

2.1. WorldView2

2.2. Study Area

3. Image Analysis

3.1. Segmentation

3.2. Classification

4. Results

5. Discussion

٠

6. Conclusion

7. References

Evaluation of segmentation and classification

- In how many percent of the investigation area are skid trails detected?
- Areas with no detected skid trails may have no skid trails at all?

Accuracy assessment:

- error matrices for evaluation of classification result quality
- \rightarrow error matrix based on a Test and Training Area (TTA) Mask
- → test areas used as reference to check classification by comparing classification with reference values from ground truth
- detection of skid trails using segmentation and OOC should be tested in mixed stands
 - or exclusion of mixed stands in application on greater areas

Conclusion

1. Introduction

2. Material

2.1. WorldView2

2.2. Study Area

3. Image Analysis

3.1. Segmentation

3.2. Classification

4. Results

5. Discussion

6. Conclusion

7. References

SOFTWARE:

- training in software → time intensive
- potential of software has not yet been fully exploited
- **Quick Map Mode**: for quick segmentation/ classification BUT limited in functionality (black box)
- Rule Set Mode: for more complex operations

SEGMENTATION:

 choice of scale, homogeneity parameter & weighting of bands most important in segmentation → iterative process

GENERAL:

•

- it is possible to extract skid trails with multiresolution segmentation from high resolution satellite images
- further research is needed!

	• Baatz, M.; Schäpe, A. (2000): Multiresolution Segmentation: an optimization approach for high quality multi-scale image segmentation. In: Journal of Photogrammetry and Remote Sensing 58 (3-4), S. 12–23.
1. Introduction	 Bechtel, B.; Ringeler, R.; Böhner, J.: Segmentation for Object Extraction of Trees using MATLAB and SAGA. In: J. Böhner, Blaschke T. und L. Montanarella (Ed.): SAGA - Seconds Out (Hamburger Beiträge zur Physischen Geographie und Landschftsökologie 19), S. 1–12.
2. Material	 Böhner, J.; Selige, T.; Ringeler, A.: Image Segmentation using Representativeness Analysis and Region Growing. In: J. Böhner, K.R McCloy und J. Strobl (Ed.): SAGA - Analyses and Modelling Applications (Göttinger Geographische Abhandlung 115), S. 29–38.
	 DigitalGlobe (2009): WorldView-2. Datasheet. http://www.satimagingcorp.com/media/pdf/WorldView-2_datasheet.pdf, accessed 05.01.2012.
2.1. WorldView2	• Eckert, S.; Kellenberger, T. W.; Lencinas, J. D. (2005): Classification and forest parameter extraction of patagonian lenga forests with ASTER and LANDSAT ETM+ data. Global Priorities in Land Remote Sensing 16.
2.2. Study Area	 Huang, L.; Ni, L. (2008): Object-Oriented Classification of High Resolution Satellite Image for Better Accuracy. In: Y. Wan, J. Zhang und M. F. Goodchild (Ed.): Proceeding of the 8th international symposium on spatial accuracy assessment in natural resources and environmental sciences, June 25-27: World Academic Union, S. 211–218.
3. Image Analysis	• Joinville, O. de (2010): Forest object-oriented classification with customized and automatic attribute selection. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science 39 (8).
3.1. Segmentation	 Lewiński, S.; Zaremski, K. (2004): Examples of object-oriented classification performed on high resolution satellite images. In: Miscellanea Geographica 11, S. 349–358.
, i i i i i i i i i i i i i i i i i i i	• Lillesand, T. M.; Kiefer, R. W.; Chipman, J. W. (2008): Remote sensing and image interpretation. 6. Aufl. Hoboken, NJ: John Wiley & Sons.
3.2. Classification	 Mathieu, R.; Aryal, J.; Chong, A. K. (2007): Object-Based Classification of Ikonos Imagery for Mapping Large-Scale Vegetation Communities in Urban Areas. In: Sensors 7 (11), S. 2860–2880.
4. Results	 Stock, I. (2005): Vergleich von Segmentierungsprogrammen f ür hochauflösende Satellitendaten am Beispiel einer Quickbird-Aufnahme von Zentral-Sulawesi, Indonesien. Bachelor Arbeit im Studiengang f ür Informatik. Georg- August-Universit ät G öttingen. Geographisches Institut.
5. Discussion	• Sullivan, A. A.; McGaughey, R. J.; Andersen, HE; Schiess, P. (2009): Object-oriented classification of forest structure from light detection and ranging data for stand mapping. In: Western Journal of Applied Forestry 24 (4), S. 198-204(7).
6. Conclusion	 Trimble Documentation (2011): eCognition Developer 8.7. Reference Book. München. Trimble Documentation (2011): eCognition Developer 8.7. User Guide, München
	Timble Documentation (2011). Coopinion Developer 0.7. Oser Guide, Manchen.
7. References	 Weih JR., R. C.; Riggan Jr., N. D. (2009): A Comparison of Pixel-based versus Object-based Land Use/Land Cover Classification Methodologies. http://www.featureanalyst.com/feature_analyst/publications/success/comparison.pdf, accessed 05.01.2012.

Thank you for your attention!

Do you have questions or hints?

04.05.2012