
LiDAR data pre-processing for Ghanaian forests biomass estimation

Arbonaut, REDD+ Unit, Joensuu, Finland

Airborne Laser Scanning principle

Objectives of the research

- Prepare the laser scanning data for further analysis:
 - Division of laser scanned data by flightlines
 - Classify or reclassify the data
 - Overlapping Digital Terrain Model analysis (!)
 - Crown Height Model creation

arbonaut

- □ LiDAR_30 features analysis on overlapping areas (!)
- Analyze the laser scanning data quality assessment

Challenges:

- Fixed-wing aircraft used for mountainous area scanning
- Missing flightline ID corrupted files received from the vendor
- Large set of laser scanning data (few hundreds of gigabytes)
- New software to be learnt

Acquired laser data descritption

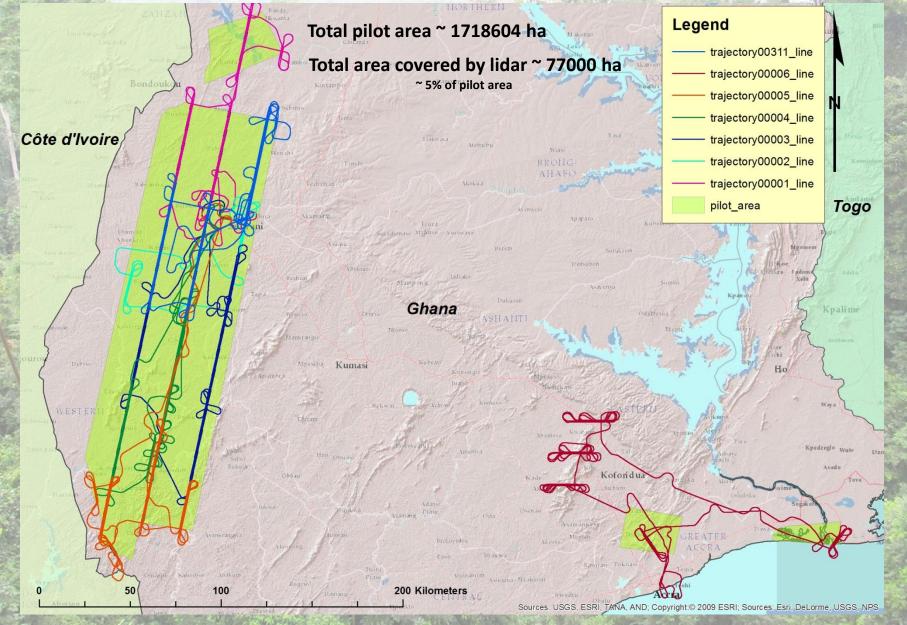
- Airborne LiDAR survey undertaken by Fugro Geoid under the supervision of Asia Air Survey Co., Ltd in December 2011 and January 2012 for the Ghana Forest Preservation Program.
- The data includes 19 LiDAR
 blocks named from B1 to B19, further divided into a total of
 879 individual tiles

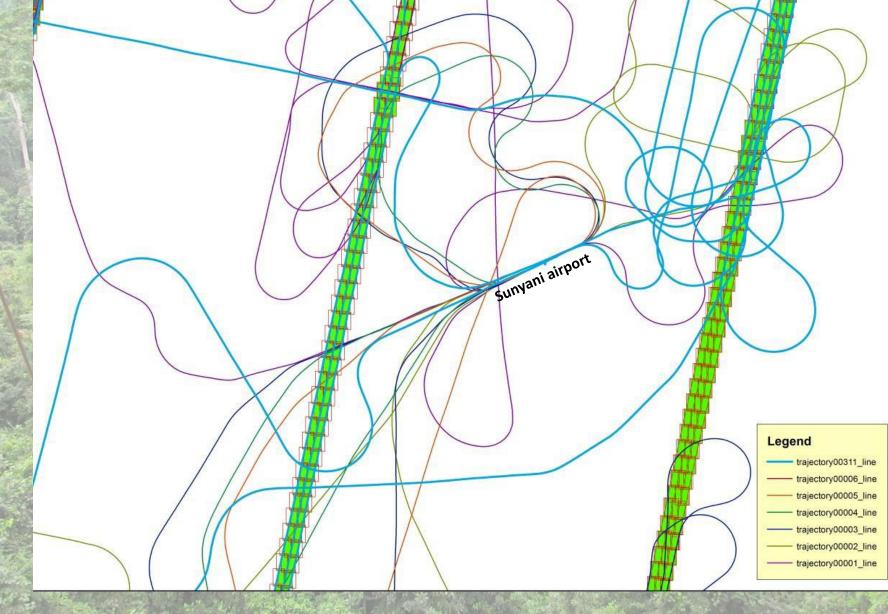
Total Coverage	770 km ²
Aerial Platform	Fixed wing
Flying altitude	1300 m AGL +/-100 m
Flying speed	120 knots ~ 222.24 km/h
Sensor pulse rate	81,100 khz
Sensor Scan speed	47.6 Hz
Pulse density - ground level	2 returns /m ²
Scan FOV half-angle	13.5 degrees
Swath width at ground level	644 m
Sensor	LEICA ALS50-II
Point spacing	1.2 m across, 1.3 m down
Laser beam setting (Optech)	N/A Leica
Beam footprint at ground level	31 cm /e ²
Projection	UTM30N
Datum	WGS84

arbonaut

Applied software

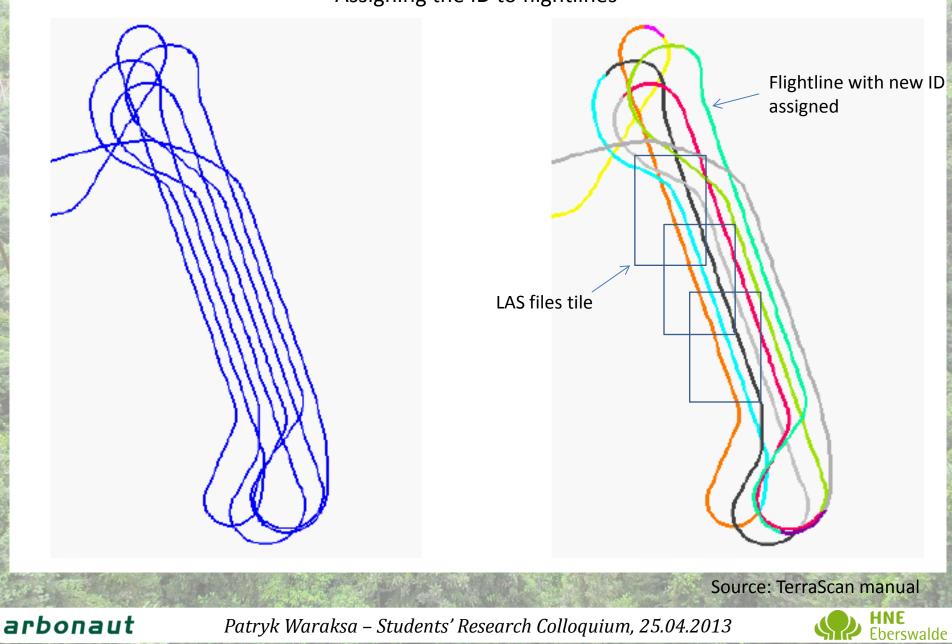
asTools



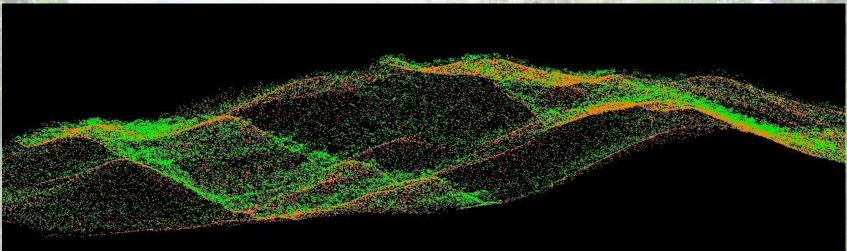

Area of investigation

arbonaut

Distribution of trajectories



arbonaut

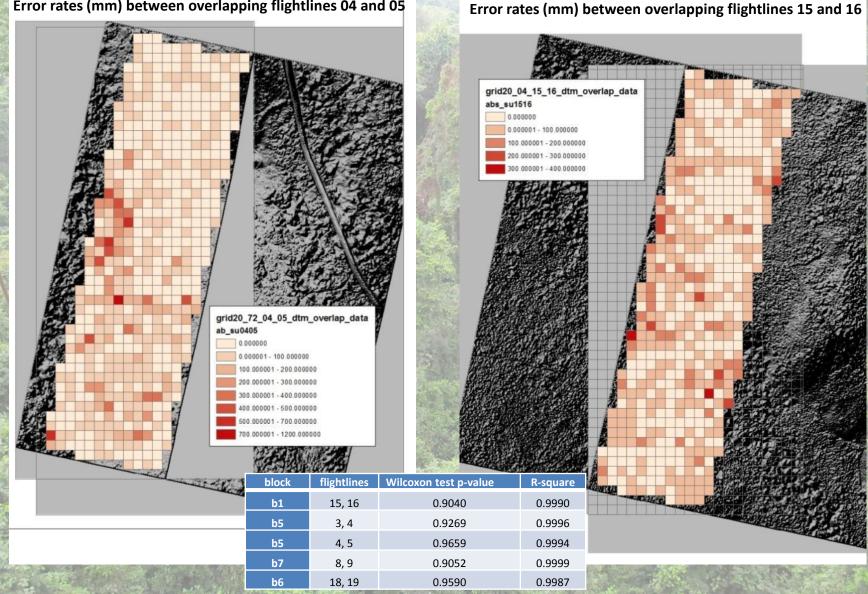


Distribution of trajectories

Assigning the ID to flightlines

Flightlines overlapping areas

DZ transformation


Vegetation and ground points Vegetation and ground points Class 2 – vegetation used Absolute vegetation height

arbonaut

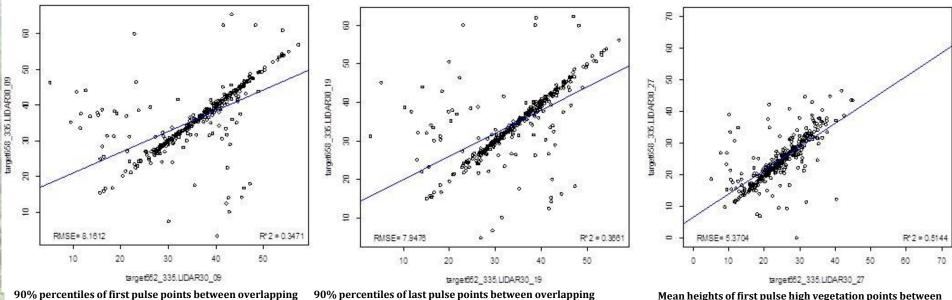
Flightlines overlapping Digital Terrain Models comparison

Error rates (mm) between overlapping flightlines 04 and 05

arbonaut

LiDAR_30 features analysis

LiDAR _30 features – Arbolidar tool developed by Virppi and Juntilla containing a set of thirty features describing some vegetation parameters based on first and last laser pulse points.


1	ALMAN AND AND A STATE OF A STATE OF A	
CANNON CONTRACTOR	110	Height of the 10%, 20%, 30% 100% percentile for first pulse points.
	1120	Height of the 10%, 20%, 30% 100% percentile for last pulse points.
	2123	Intensity for which the cumulative sum of ordered first pulse intensities is closed to 30%, 60% and 90% of the total intensity sum.
	2426	Intensity for which the cumulative sum of ordered first pulse intensities is closed to 30%, 60% and 90% of the total intensity sum.
and a second	27	Mean height of first pulse high vegetation points (points over highveg_threshold m).
Composition of the	28	Standard deviation of first pulse heights.
	29	The ratio of the below vegetation first pulse points (points under ground_threshold m) and all first pulse points.
STATES OF	30	The ratio of the below vegetation last pulse points (points under ground_threshold m) and all last pulse points.

Patryk Waraksa – Students' Research Colloquium, 25.04.2013

arbonaut

LiDAR_30 features analysis

flightlines 652 and 658

90% percentiles of last pulse points between overlapping flightlines 652 and 658

Me	ean heights of first pulse high vegetation points between
ov	erlapping flightlines 652 and 658

and the second		A REAL PROPERTY AND		1 20 22 200
and the second second	LIDAR30 feature	R ²	LIDAR30 feature	R ²
	1	0,5358	16	0,4791
	2	0,5625	17	0,4418
	3	0,5661	18	0,3957
LAN THE AND	4	0,5094	19	0,3661
	5	0,4999	20	0,3168
The second second	6	0,4389	21	0,4353
	7	0,4005	22	0,3323
	8	0,3786	23	0,1680
Real Street	9	0,3471	24	0,5188
	10	0,3000	25	0,4528
The states of	11	0,5518	26	0,3943
	12	0,5195	27	0,5144
	13	0,5293	28	0,4552
	14	0,4903	29	0,5463
	15	0,4938	30	0,2428

arbonaut

Conclusions

Similarity in Digital Terrain Models of overlapping flightlines data (despite dense vegetation)

- On some locations significant differences in vegetation parameters between flightlines data due to outlying values
- Outliers are caused by scanning angles, measurement errors, positioning errors, varying ecotypes, varying topography and Above Ground Level of laser scanning altitude differences
- Outliers need to be eliminated by some method

arbonaut

10.00

1

Further research tasks (to be continued)

Field measurements (not completed) as reference data

Estimation of forest parameters (biomass)

arbonaut

References

- Sah et al (2012), The use of satellite imagery to guide field plot sampling scheme for biomass estimation in Ghanaian forest
- Virpi Junttila (2010) Lidar-measurement based Forest stand parameter estimation using Sparse Bayesian model,
- Junttila Virpi, Kauranne Tuomo, Leppänen Vesa (2010) Estimation of Forest Stand Parameters from Airborne Laser Scanning Using Calibrated Plot Databases
- □ TerraSolid (2012), TerraScan User's Guide
- Vinod Kumar (2012), Forest inventory parameters and carbon mapping from airborne LiDAR
- □ Jon Starkweather (2011), Bayesian Generalized Linear Models in R
- Naesset, E., 2002. Determination of mean tree height of forest stands by digital photogrammetry.
- Form TECH-4: Description of Approach, Methodology and Work Plan for Performing the Assignment – Selection of Consultants for republic of Ghana

arbonaut

Thank you for your attention

arbonaut

